

US DEPARTMENT OF ENERGY COOPERATIVE AGREEMENT NO. DE-FC02-00CH11053

FUEL FLEXIBLE, ULTRALOW-EMISSIONS COMBUSTION SYSTEM FOR INDUSTRIAL GAS TURBINES

Peer Review - March 2002

Ian Critchley, Honeywell - Principal Investigator

Technical Approach

- rich/catalytic/lean burn (RCL™) combustion system
- fully air-staged for accurate flame temperature control
- fuel flexible gas & liquid
- real time emissions sensing for closed loop air staging control
- targeted for the ASE50DLE 3.9 MW industrial engine (11:1 PR)

ASE50DLE engine

Main Program Objectives & Targets

Program Objective	DOE Objective	
Technology demonstration and	Encourages adoption and use of	
risk reduction on a low NOx	ultra-low emissions technology	
catalytic combustion system for		
industrial gas turbines		
Target NOx levels below 5 ppm	NOx < 5 ppm on natural gas	
on natural gas		
Catalyst system to be capable of	Technology transition to alternate	
running on both natural gas and	and back-up fuels and reduce	
Diesel fuels	NOx emissions on these fuels	
Catalytic combustion system to	Encourages adoption and use of	
be retrofitable into the Honeywell	ultra-low emissions technology	
ASE50DLE industrial engine		
Develop direct NO/CO emissions	NOx < 5 ppm	
sensing system to prototype level	Adaptability to alternate and	
	back-up fuels	

Program Organization - Collaboration

- Honeywell is lead contractor responsible for integration of catalyst system into engine
- Precision Combustion Inc. (PCI) responsible for catalyst module development, testing & definition
- Texas A&M University responsible for development of prototype, real-time emission sensing system
- Vericor Power Systems partial funding & voice of the customer

Program Approach - Phase 1 (Concept Study)

Subtask 1.1 - Sub-Scale Catalyst Development (PCI)

- design & optimize catalyst for engine operating conditions, pressure drop, and emissions on natural gas
- sub-scale catalyst test program based on natural gas and Diesel fuel, testing to include an alternate fuel
- define catalyst modules for ASE50DLE application

Subtask 1.2 - Combustor Preliminary Design and Development (Honeywell/PCI)

- preliminary design of a dual fuel catalytic combustion system for the ASE50DLE engine
- define the form, fit, and function of a combustion system to integrate the catalyst module into the ASE50DLE engine

Subtask 1.3 - Emissions Sensor Breadboard Development (Texas A&M University)

- develop novel, diode-laser-based, real-time NO/CO emissions sensing system to prototype level, aimed at closed loop control of air-staging valves
- engine demonstration of prototype at Honeywell

<u>Subtask 1.1 - Sub-scale Catalyst Development (PCI)</u>

RCLTM for ASE50DLE single digit emissions and operability developed and designed.

Stable, lean combustion downstream of catalyst at low firing temperatures (1300°C/2400°F) achieved.

Steam vaporization of Diesel selected over preheater approach for reduced risk & system simplicity (cogeneration)

Subtask 1.1 - Sub-scale Catalyst Development (PCI)

Subtask 1.2 - Combustor Preliminary Design (Honeywell/PCI) Honeywell Air Staging Concept

- Air staging provides constant flame fuel/air ratio over entire operating range
- Air staging valves maintain constant pressure drop at all positions
- Allows closed loop control of flame temperature using emissions feedback

- Independent control of each premixer possible
- Automatic flashback control

Subtask 1.2 - Combustor Preliminary Design (Honeywell/PCI)

Schematic of dual fuel catalyst combustion system

Subtask 1.2 - Combustor Preliminary Design (Honeywell/PCI)

Subtask 1.2 - Combustor Preliminary Design (Honeywell/PCI)

Integration of RCL[™] into ASE50DLE engine - predicted combustor temperature distribution

Lower flame temperatures reduce NOx, preheating lowers CO

<u>Subtask 1.3 - Emissions Sensor Development (Texas A&M University)</u>

Schematic of NO Exhaust Emissions Sensing System

NO Spectrum from 0.30 m Gas Cell

<u>Subtask 1.3 - Emissions Sensor Development (Texas A&M University)</u>

NO Sensor Operating at Texas A&M University

Novel NO sensor demonstrated at Texas A&M University with sub-ppm sensitivity for a 1 m path length

Sum frequency mixing of visible lasers used to generate UV light

Ruggedized, compact version of the sensor is being developed on a 2'x4' breadboard

Engine test at Honeywell in May, 2002

CO sensor at 4.5 μm has also been developed, initial measurements in progress

Summary of Technical Progress/Status

Subtask 1.1 - Sub-Scale Catalyst Development (PCI)

- Conversion rate testing completed on natural gas, Diesel and simulated landfill gas catalyst design for combustion tests defined
- emissions tests on methane, Diesel and simulated landfill gas completed
 - NOx < 5ppm on methane and landfill gas up to 100% power
 - NOx < 15 ppm on Diesel up to 75% power
- catalyst module sizing for ASE50DLE application defined

Subtask 1.2 - Combustor Preliminary Design (Honeywell/PCI)

- Air staging system calibration completed, first ASE50DLE combustion rig test complete
- casing design to accommodate RCL™ modules completed, integrated into DLE system, hardware available
- method of catalyst integration defined, CFD modeling to optimize inlet air flows in progress

Subtask 1.3 - Emissions Sensor Development (Texas A&M University)

- NO prototype developed and tested using room temperature gas cell, currently packaging for engine test
- Mid-infrared CO system based on difference-frequency mixing has been developed, is currently being tested in laboratory

Progress towards Objectives

	Objective		Status
•	NOx levels below 5 ppm on natural	•	demonstrated
	gas		
•	Catalyst system to be capable of		
	running on both natural gas and	•	demonstrated
	Diesel fuel		
•	Catalytic combustion system design	•	Engine casing designed to suit
	to be retrofitable into the Honeywell		catalyst, full scale hardware
	ASE50DLE 3.9 MW industrial		available
	engine	•	Optimization of air inlet in progress
•	Develop direct NO/CO emissions	•	NO prototype system developed,
	sensing system to prototype level		available for engine test
		•	CO system in progress

Future Work

Short term, 2002 (included in present program)

- complete CFD modeling study of catalyst air inlet region and define configuration to reduce pressure drop and improve air flow distribution
- complete development of the prototype CO system and demonstrate in lab tests
- conduct demonstration of emissions sensing system on engine
- final reporting